Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pathol Inform ; 14: 100340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028128

RESUMO

The cell cycle is a rich field for research, especially, the DNA damage. DNA damage, which happened naturally or as a result of environmental influences causes change in the chemical structure of DNA. The extent of DNA damage has a significant impact on the fate of the cell in later stages. In this paper, we introduced an Unsupervised Machine learning Model for DNA Damage Diagnosis and Analysis. Mainly, we employed K-means clustering unsupervised machine learning algorithms. Unsupervised algorithms commonly draw conclusions from datasets by solely utilizing input vectors, disregarding any known or labeled outcomes. The model provided deep insight about DNA damage and exposes the protein levels for proteins when work together in sub-network model to deal with DNA damage occurrence, the unsupervised artificial model explained the sub-network biological model activities in regard to the changing in their concentrations in several clusters, they have been grouped in such as (0 - no damage, 1 - low, 2 - medium, 3 - high, and 4 - excess) DNA damage clusters. The results provided a rational and persuasive explanation for numerous important phenomena, including the oscillation of the protein p53, in a clear and understandable manner. Which is encouraging since it demonstrates that the K-means clustering approach can be easily applied to many similar biological systems, which aids in better understanding the key dynamics of these systems.

2.
Biosystems ; 203: 104374, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33556446

RESUMO

Model reduction is an important topic in studies of biological systems. By reducing the complexity of large models through multi-level models while keeping the essence (biological meaning) of the model, model reduction can help answer many important questions about these systems. In this paper, we present a new reduction method based on hierarchical representation and a lumping approach. We used G1/S checkpoint pathway represented in Ordinary Differential Equations (ODE) in Iwamoto et al. (2011) as a case study to present this reduction method. The approach consists of two parts; the first part represents the biological network as a hierarchy (multiple levels) based on protein binding relations, which allowed us to model the biological network at different levels of abstraction. The second part applies different levels (level 1, 2 and 3) of lumping the species together depending on the level of the hierarchy, resulting in a reduced and transformed model for each level. The model at each level is a representation of the whole system and can address questions pertinent to that level. We develop and simulate reduced models for levels-1, 2 and 3 of lumping for the G1/S checkpoint pathway and evaluate the biological plausibility of the proposed method by comparing the results with the original ODE model of Iwamoto et al. (2011). The results for continuous dynamics of the G1/S checkpoint pathway with or without DNA-damage for reduced models of level- 1, 2 and 3 of lumping are in very good agreement and consistent with the original model results and with biological findings. Therefore, the reduced models (level-1, 2 and 3) can be used to study cell cycle progression in G1 and the effects of DNA damage on it. It is suitable for reducing complex ODE biological network models while retaining accurate continuous dynamics of the system. The 3 levels of the reduced models respectively achieved 20%, 26% and 31% reduction of the base model. Moreover, the reduced model is more efficient to run (30%, 44% and 52% time reduction for the three levels) and generate solutions than the original ODE model. Simplification of complex mathematical models is possible and the proposed reduction method has the potential to make an impact across many fields of biomedical research.


Assuntos
Dano ao DNA , Pontos de Checagem da Fase G1 do Ciclo Celular , Animais , Ciclo Celular , Mamíferos , Modelos Biológicos , Modelos Teóricos , Transdução de Sinais , Biologia de Sistemas
3.
Biosystems ; 191-192: 104128, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32165312

RESUMO

Biological systems are difficult to understand complex systems. Scientists continue to create models to simulate biological systems but these models are complex too; for this reason, new reduction methods to simplify complex biological models into simpler ones are increasingly needed. In this paper, we present a way of reducing complex quantitative (continuous) models into logical models based on time windows of system activity and logical (Boolean) models. Time windows were used to define slow and fast activity areas. We use the proposed approach to reduce a continuous ODE model into a logical model describing the G1/S checkpoint with and without DNA damage as a case study. We show that the temporal unfolding of this signalling system can be broken down into three time windows where only two display high level of activity and the other shows little or no activity. The two active windows represent a cell committing to cell cycle and making the G1/S transition, respectively, the two most important high level functions of cell cycle in the G1 phase. Therefore, we developed two models to represent these time windows to reduce time complexity and used Boolean approach to reduce interaction complexity in the ODE model in the respective time windows. The developed reduced models correctly produced the commitment to cell cycle and G1/S transfer through the expected behavior of signalling molecules involved in these processes. As most biological models have a large number of fast reactions and a relatively smaller number of slow reactions, we believe that the proposed approach could be suitable for representing many, if not all biological signalling networks. The approach presented in this study greatly helps in simplifying complex continuous models (ODE models) into simpler models. Moreover, it will also assist scientists build models concentrating on understanding and representing system behavior rather than setting values for a large number of kinetic parameters.


Assuntos
Algoritmos , Dano ao DNA , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Simulação por Computador , Fase G1/genética , Fase G1/fisiologia , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Fase S/genética , Fase S/fisiologia , Transdução de Sinais/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...